¢ neotechnology

value in relationships

Graph Modeling Do’s and Don’ts

@markhneedham
mark.needham@neotechnology.com

Credit for the slides goes to lan Robinson
@iansrobinson on twitter

Outline

Property Graph Refresher
A modeling workflow
Modeling tips

Testing your data model

Property Graph Refresher

Property Graph Data Model

person

author

person

title: Tinker,

nam%: John Le WROTE — > BRIl 4—PURCHASED
arre Spy date:03-02-2011

PURCHASED
date:09-09-2011

PURCHASED
date:05-07-2011

person

author

person
ENER

Graham

Greene

title: Our Man

in Havana name: Alan

Four Building Blocks

* Nodes
* Relationships

* Properties

e Labels

name: John Le

Carre

name:
Graham
Greene

Nodes

title: Tinker,

Tailor, Soldier,
Spy

title: Our Man
in Havana

name: Alan

Nodes

* Used to represent entities and complex value
types in your domain

* Can contain properties

— Used to represent entity attributes and/or
metadata (e.g. timestamps, version)
— Key-value pairs
* Java primitives
* Arrays
 null is not a valid value

— Every node can have different properties

Entities and Value Types

* Entities
— Have unique conceptual identity

— Change attribute values, but identity remains the
same

* Value types
— No conceptual identity

— Can substitute for each other if they have the
same value

e Simple: single value (e.g. colour, category)

 Complex: multiple attributes (e.g. address)

Relationships

——\WROTE —p «—PURCHASED _

date:03-02-2011

PURCHASED
date:09-09-2011

PURCHASED
date:05-07-2011

Relationships

* Every relationship has a name and a direction
— Add structure to the graph
— Provide semantic context for nodes

* Can contain properties

— Used to represent quality or weight of
relationship, or metadata

* Every relationship must have a start node and
end node

— No dangling relationships

Relationships (continued)

N /

FRIEND FRIEND

S

COLLEAGUE

Nodes can be connected by
FRIEND more than one relationship

name:
Sarah

Nodes can have more
than one relationship

Variable Structure

* Relationships are defined with regard to node
instances, not classes of nodes

— Two nodes representing the same kind of “thing”
can be connected in very different ways

e Allows for structural variation in the domain

— Contrast with relational schemas, where foreign
key relationships apply to all rows in a table

* No need to use null to represent the absence of a
connection

Labels

Person

Author Book Person

Person
Author Person

Labels

* Every node can have zero or more labels

* Used to represent roles (e.g. user, product,
company)

— Group nodes

— Allow us to associate indexes and constraints with q
groups of nodes

Four Building Blocks

Nodes

— Entities

Relationships

— Connect entities and structure domain
Properties

— Entity attributes, relationship qualities, and
metadata

Labels
— Group nodes by role

A modeling workflow

Models

~@-<

Images: en.wikipedia.org

Design for Queryability

Query

User stories

Derive questions

I want
" t? k{zow Who jn the co
S Similqr Skills to me ey

So th
at we cqp exchange knowl/eg,
ge

Which people, who work for the same company
as me, have similar skills to me? q

ldentify entities

people company
skills

person

company
skill

ldentify relationships between entities

work for
have

person WORKS FOR company
person HAS SKILL skill

Convert to Cypher paths

person WORKS_ FOR company
person HAS SKILL skill

(person)-
(person)-

WORKS _ FOR]->(company),

"HAS_SKILL]->(skill)

Cypher paths

(person)-[:WORKS _FOR]->(company),
(person)-[:HAS_SKILL]->(skill)

(company)<-[[WORKS_FOR]-(person)-[:HAS SKILL]->(skill)

- -
WORKS_FOR HAS_SKILL

Data model

(company)<-[.WORKS_FOR]-(person)-[:HAS_SKILL]->(skill)

name:
Acme

A

WORKS_FOR T

o

WORKS_FOR

WORKS_FOR

person

name: lan name: Bill

HAS_SKILL

HAS_SKILL HAS_SKILL

Formulating question as graph pattern

Which people, who work for the same company
as me, have similar skills to me?

Cypher query

Which people, who work for the same company
as me, have similar skills to me?

MATCH (company)<-[[WORKS_FOR]-(me:person)-[:HAS SKILL]->(skill),
(company)<-[:WORKS_FOR]-(colleague)-[:HAS SKILL]->(skill)
WHERE me.name = {name}
RETURN colleague.name AS name,
count(skill) AS score,
collect(skill.name) AS skills
ORDER BY score DESC

Graph pattern

Which people, who work for the same company
as me, have similar skills to me?

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_ SKILL]->(skill),
(company)<-[:WORKS_FOR]-(colleague)-[:HAS_ SKILL]->(skill)

Anchor pattern in graph

Which people, who work for the same company
as me, have similar skills to me?

WHERE me.name = {name}

If an index for
Person.name exists,
Cypher will use it

Create projection of results

Which people, who work for the same company
as me, have similar skills to me?

RETURN colleague.name AS name,
count(skill) AS score,
collect(skill.name) AS skills

ORDER BY score DESC

First match

company

company

WORKS_FOR WORKS_FOR

WORKS_FOR

me colleague

T

WORKS_FOR HAS_SKILL HAS_SKILL

person person

person

name: lan

HAS_SKILL

Second match

company

company

WORKS_FOR WORKS_FOR

WORKS_FOR

me colleague

T

WORKS_FOR HAS_SKILL HAS_SKILL

person person

person

name: lan

HAS_SKILL

Third match

company

company

WORKS_FOR WORKS_FOR

WORKS_FOR WORKS_FOR me

colleague

HAS_SKILL HAS_SKILL

person

name: lan

person person

name: Bill

HAS_SKILL

Running the query

| name | score | skills |

| "Lucy" |2 | ['Java","Neo4)"] |
|"Bill" |1 | ['Neo4j"] |

From user story to model

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),
(company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)
WHERE me.name = {name}
RETURN colleague.name AS name,
count(skill) AS score,
collect(skill.name) AS skills
ORDER BY score DESC

A T X
WORKS_FOR WORKS_FOR
Which people, who w, or the same
company as me, have erson

milar skills to me?
[

person WORKS_FOR company name:
person HAS_SKILL skill

(company)<-[:WORKS_FOR]-(person)-[:HAS_SKILL]->(skill)

Modeling tips

Nodes for things

name: lan
email: ...

Labels for grouping

name: lan

email: ...

Relationships for structure

name:
Acme

WORKS _FOR
start: 20090334

name: lan
email: ...

HAS_SKILL

level: expert

name:
Neo4j

Properties vs Relationships

LAST_NAME
FIRST_NAME

\ 4 AGE/

HOME_ADDRESS WORK_ADDRESS

value: Flat 4—LINE_1
3B

LINE 2

TOWN posTcoDE POSTCODE
value: 83

value:
Landor St Lowenden

first-name: Patrick
y € last-name: Scott
age: 34

home-address: Flat 3B,
83 Landor St,
Axebridge,
DF3 0AS

work-address: Acme Ltd,
12 Crick St,
Balton,
DG4 9CD

Use relationships when...

* You need to specify the weight, strength, or
some other quality of the relationship

 AND/OR the attribute value comprises a
complex value type (e.g. address)

 Examples:

— Find all my colleagues who are expert (relationship
quality) at a skill (attribute value) we have in
common

— Find all recent orders delivered to the same
delivery address (complex value type)

Find Expert Colleagues

WORKS_FOR WORKS_FOR

!

name: lan name: Bill

HAS_SKILL

HAS_SKILL level: expert HAS_SKILL
: level: ad d

level: advanced evel: advance HAS SKILL

HAS_SKILL level: expert
level: beginner

HAS_SKILL
level: expert

HAS_SKILL
level: advanced

Find Expert Colleagues

MATCH (user:Person)-[:HAS SKILL]->(skill),
(user)-[[WORKS_FOR]->(company),
(colleague)-[[WORKS_FOR]->(company),
(colleague)-[r:HAS_SKILL]->(skill)

WHERE user.name = {name} AND r.level = {skillLevel}

RETURN colleague.name AS name, skill.name AS skill

Relate and Filter

(colleague)-[r:HAS_SKILL]->(skill)
WHERE rlevel = {skillLevel}

Use properties when...

* There’s no need to qualify the relationship

* AND the attribute value comprises a simple
value type (e.g. colour)

 Examples:

— Find those projects written by contributors to my
projects that use the same language (attribute q
value) as my projects

Find Projects With Same Languages

username:
dsfiggs

name: autopop name: cmd-batch
language: [ruby] language: [java]

CONTRIBUTED_TO

username:
glgregg
CONTRIBUTED_TO
CONTRIBUTED_TO

CONTRIBUTED_TO CONTRIBUTED_TO

name: dotGrowl username:

language: [c#, f#] larden username. username. username:

trbaker aksmith hjones

name: bezl
language:

[javascript]

name: polyphony
language: [java,
scala]

name: boint name: rup4j
language: [ruby] language: [java]
name: rflsh
[ELTVELERY]

Find Projects With Same Languages

MATCH (user:User)-[:WROTE]->(project:Project),
(contributor)-[.CONTRIBUTED_TQO]->(project),
(contributor)-[:WROTE]->(otherProject:Project)

WHERE user.username = {username}

AND ANY (otherLanguage IN otherProject.language
WHERE ANY (language IN project.language
WHERE language = otherLanguage))

RETURN contributor.username AS username,
otherProject.name AS project,
otherProject.language AS languages

Relate and Filter

WHERE
AND ANY (otherLanguage IN otherProject.language
WHERE ANY (language IN project.language
WHERE language = otherLanguage))

If Performance is Critical...

* Small property lookup on a node will be
guicker than traversing a relationship

— But traversing a relationship is still faster than a
SQL join...
* However, many small properties on a node, or
a lookup on a large string or large array
property will impact performance

— Always performance test against a
representative dataset

Relationship Granularity

‘ ‘
CONNECTED_TO CONNECTED_TO

Person

=3
CONNECTED TO |CONNECTED_TO ‘
AN Ve
PETERS_WORK
— — PETERS_BEST_FIEND
CONNECTED_TO EOLLEREUE | :
[Person |
\ J

PETERS_HOME_
ADDRESS

PETERS_WORK_
ADDRESS

FIRST_THING_PETER_
BOUGHT_ON_EBAY

General Relationships
* Qualified by property

ADDRESS ADDRESS
type: work type: home

Easy to Query Across All Types

MATCH (person)-[a:ADDRESS]->(address)
WHERE person.name = {name}
RETURN a.type AS type,

address.firstline AS firstline

Property Access to Discover Sub-Types

MATCH (person)-[a:ADDRESS]->(address)
WHERE person.name = {name}

AND a.type = {type}
RETURN address.firstline AS firstline

Specific Relationships

WORK_ADDRESS HOME_ADDRESS

Easy to Query Specific Types

MATCH (person)-[:HOME_ADDRESS]->(address)
WHERE person.name = {name}
RETURN address.firstline AS firstline

Cumbersome to Discover All Types

MATCH (person)-
[a:HOME_ADDRESS|WORK_ADDRESS]
->(address)

WHERE person.name = {name}

RETURN type(a) AS type,
address.firstline AS firstline

Cumbersome to Discover All Types

[a:HOME_ADDRESS|WORK_ADDRESS]

Best of Both Worlds

WORK_ADDRESS HOME_ADDRESS

ADDRESS ADDRESS
’7& work type: home

Don’t model entities as relationships

e Limits data model evolution

— Unable to associate more entities
e Entities sometimes hidden in a verb
e Smells:

— Lots of attribute-like properties

— Property value redundancy
— Heavy use of relationship indexes

Example: Reviews

ﬁ

REVIEWED

text: This is ...

source: amazon.co.uk
date: 20121125

Add another review

person

person

name: Alan

REVIEWED REVIEWED

text: This is ... text: When | saw ...
source: amazon.co.uk source: filmreview.org
date: 20121125 date: 20121204

And another

person person

name: Alan

REVIEWED REVIEWED REVIEWED
text: This is ... text: When | saw ... text: lwas ...
source: amazon.co.uk source: filmreview.org ~ Source: amazon.co.uk

date: 20121125 date: 20121204 date: 20121227

title: The
Hobbit

Problems

e Redundant data
(2 x amazon.co.uk)

* Difficult to find me e s
reviews for source

urce: amazon.co.uk

source: source: filmreview.org :
date: 20121125 date: 20121204 date: 20121227

e Users can’t comment
on reviews

Revised model

address:
filmreview.org

/

SOURCE

address:
amazon.co.uk

£ =

SOURCE
SOURCE

title:
The Hobbit

*

REVIEW_OF

Lincoln

REVIEW_OF

REVIEW_OF

. review
roviow |
text: This is ... text: When | ... text: | was ...

\ y /

WROTE_REVIEW
WROTE_REVIEW
WROTE_REVIEW

person person

name: lan name: Alan

Model actions in terms of products

address:
filmreview.org

/

SOURCE

address:
amazon.co.uk

£ =

SOURCE
SOURCE

title:
The Hobbit

*

REVIEW_OF

Lincoln

REVIEW_OF

REVIEW_OF

. review
roviow |
text: This is ... text: When | ... text: | was ...

\) /

WROTE_REVIEW
WROTE_REVIEW
WROTE_REVIEW

person person

name: lan name: Alan

Testing

Test-driven data modeling

e Unit test with small, well-known datasets
— Inject small graphs to test individual queries
— Datasets express understanding of domain

— Use the tests to identify regressions as your data
model evolves

* Performance test queries against
representative dataset

Query times proportional to size of
subgraph searched

Query times proportional to size of
subgraph searched

Query times proportional to size of
subgraph searched

P g ede
G e

‘ -/
L T
SRS
st DA
\/=/ =
P L T vﬂ?’ a0
Tl {EED “3‘ -

Query times remain constant ...

... unless subgraph searched grows

Unit test fixture

public class ColleagueFinderTest {

private static GraphDatabaseService db;
private static ColleagueFinder finder;

@BeforeClass

public static void init() {
db = new TestGraphDatabaseFactory().newlmpermanentDatabase();
ExampleGraph.populate(db);
finder = new ColleagueFinder(db);

}

@AfterClass
public static void shutdown() {
db.shutdown();

}
}

ImpermanentGraphDatabase

* |n-memory
* For testing only

<dependency>
<groupld>org.neo4j</groupld>
<artifactld>neo4j-kernel</artifactld>
<version>${project.version}</version>
<type>test-jar</type>
<scope>test</scope>

</dependency>

Create sample data

public static void populate(GraphDatabaseService db) {
ExecutionEngine engine = new ExecutionEngine(db);

String cypher =
"CREATE ian:person VALUES {name:'lan'},\n" +
bill:person VALUES {name:'Bill'},\n" +
lucy:person VALUES {name:'Lucy'},\n" +
acme:company VALUES {name:'Acme'},\n" +

/I Cypher continues...

(bill)-[:HAS_SKILL]->(neo4j),\n" +
(bilD-[:HAS_SKILL]->(ruby)\n" +
(lucy)-[:HAS_SKILL]->(java),\n" +
(lucy)-[:HAS_SKILL]->(neo4))";

engine.execute(cypher);

}

Unit test

@Test
public void shouldFindColleaguesWithSimilarSkills() throws Exception {

/Il when
Iterator<Map<String, Object>> results = finder.findFor("lan");

/] then

assertEquals("Lucy", results.next().get("name"));
assertEquals("Bill", results.next().get("name"));

assertFalse(results.hasNext());

Object under test

public class ColleagueFinder {
private final ExecutionEngine cypherEngine;

public ColleagueFinder(GraphDatabaseService db) {
this.cypherEngine = new ExecutionEngine(db);

}

public Iterator<Map<String, Object>> findFor(String name) {

findFor() method

public Iterator<Map<String, Object>> findFor(String name) {

String cypher =
"MATCH (me:person)-[.WORKS_FOR]->(company),\n" +
" (me)-[:HAS_SKILL]->(skill),\n" +
" (colleague)-[[WORKS_FOR]->(company),\n" +
" (colleague)-[:HAS_SKILL]->(skill)\n" +
"WHERE me.name = {name}\n" +
"RETURN colleague.name AS name,\n" +
! count(skill) AS score \n" +
collect(skill.name) AS skills\n" +
"ORDER BY score DESC";

Map<String, Object> params = new HashMap<String, Object>();
params.put("name", name);

return cypherEngine.execute(cypher, params).iterator();

}

Unmanaged extension

@Path("/similar-skills")
public class ColleagueFinderExtension {

}

private static final ObjectMapper MAPPER = new ObjectMapper();
private final ColleagueFinder colleagueFinder;

public ColleagueFinderExtension(@Context GraphDatabaseService db) {
this.colleagueFinder = new ColleagueFinder(db);

}

@GET

@Produces(MediaType.APPLICATION_JSON)

@Path("/{name}")

public Response getColleagues(@PathParam("name") String name)
throws IOException {

String json = MAPPER
.writeValueAsString(colleagueFinder.findFor(name));
return Response.ok().entity(json).build();

}

JAX-RS annotations

@Path("/similar-skills")

@GET
@Produces(MediaType.APPLICATION_JSON)
@Path("/{name}")

@PathParam("name")

Map HTTP request to object+method

@Path("/similar-skills")

@GET —

@Path("/{name}") — ’

@PathParam("name")

Database injected by server

private final ColleagueFinder colleagueFinder;

@Context GraphDatabaseService db
this.colleagueFinder = new ColleagueFinder(db);

Generate and format response

private static final ObjectMapper MAPPER = new ObjectMapper();

String json = MAPPER
.writeValueAsString(colleagueFinder.findFor(name));
return Response.ok().entity(json).build();

Extension test fixture

public class ColleagueFinderExtensionTest {
private static CommunityNeoServer server;

@BeforeClass
public static void startServer() throws IOException
{
server = CommunityServerBuilder.server()
withThirdPartyJaxRsPackage(
"org.neodj.good_practices"”, "/colleagues™)
build();

server.start();

ExampleGraph.populate(server.getDatabase().getGraph());
}

@AfterClass
public static void stopServer() {
server.stop();

}
}

CommunityServerBuilder

* Programmatic configuration

<dependency>
<groupld>org.neo4j.app</groupld>
<artifactld>neo4j-server</artifactld>
<version>${project.version}</version>
<type>test-jar</type>

</dependency>

Testing extensions

@Test
public void shouldReturnColleaguesWithSimilarSkills() throws Exception {

Client client = Client.create(new DefaultClientConfig());

WebResource resource = client
.resource("http://localhost:7474/colleagues/similar-skills/lan");

ClientResponse response = resource
.accept(MediaType.APPLICATION_JSON)

.get(ClientResponse.class);

List<Map<String, Object>> results = new ObjectMapper()
.readValue(response.getEntity(String.class), List.class);

/I Assertions

Testing extensions (continued)

assertEquals(200, response.getStatus());
assertEquals(MediaType.APPLICATION_JSON,
response.getHeaders().get("Content-Type").get(0));

assertEquals("Lucy", results.get(0).get("name"));
assertThat((Iterable<String>) results.get(0).get("skills"),
hasltems("Java", "Neo4j"));

Examples to follow

* Neo4dj Good Practices

Accompanying code for some of the examples in this

talk.https://github.com/iansrobinson/neo4j-good-
practices

* Cypher-RS
A server extension that allows you to configure fixed q

REST end points for cypher queries.
https://github.com/jexp/cypher-rs

https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/jexp/cypher-rs
https://github.com/jexp/cypher-rs
https://github.com/jexp/cypher-rs

Learning More

Graph Databases Book

www.graphdatabases.com

Ian Robinson,

O'REILLY™ JIm Webber & Emil Eifrem

http://www.graphdatabases.com

Neo4j Manual Modeling Examples

IH

Google “neo4j modeling manua

Chapter 7. Data Modeling Examples

The Neo4j Manual > Tutorials > Data Modeling Examples

Table of Contents

7.1. User roles in graphs

7.2. ACL structures in graphs

7.3. Linked Lists

7.4. Hyperedges

7.5. Basic friend finding based on social neighborhood
7.6. Co-favorited places

7.7. Find people based on similar favorites

7.8. Find people based on mutual friends and groups
7.9. Find friends based on similar tagging

7.10. Multirelational (social) graphs

7.11. Implementing newsfeeds in a graph

7.12. Boosting recommendation results

7.13. Calculating the clustering coefficient of a network
7.14. Pretty graphs

7.15. A multilevel indexing structure (path tree

7.16. Complex similarity computations

7.17. The Graphity activity stream model

The following chapters contain simplified examples of how different domains can be
modeled using Neo4j. The aim is not to give full examples, but to suggest possible ways to
think using nodes, relationships, graph patterns and data locality in traversals.

The examples use Cypher queries a lot, read Part I, “Cypher Query Language” for more

information.

Cypher Modeling Challenge

« What is the average taxi time at each airport for both departures and arrivals? G hG H ch I I S b - H
« What s the leading cause of departure delays at each airport? rap ISt a enge u m Iss |0n5
+ How many outbound flights were cancelled at each airport?

Or more specific questions such as:

The GraphGist Challenge was run during September 2013 and had the following submissions:

+ Which flights from Los Angeles (LAX) to Chicago (ORD) were delayed for more than 10 minutes due to late arrivals?
« How does seasonality affect departure taxi times at Chicago’s O’Hare International Airport (ORD)?

« Whatis the standard deviation of arrival taxi times at Dallas/Fort Worth (DFW)? - HOllda}l' Resorts b'y Flaju Rama Krishna
These are the types of questions airline carriers are asking when attempting to construct efficient flight plans for their customers. .
After initializing the data (Query 1), we can start answering these questions and drawing insights. L] Spoﬂs League by @yara\”nd

Query 1 — this query has been used to initialize the console o Learni ng Graph by jotomo

Q-

+ |KEA furniture Graph by @rvanbruggen

+ Enterprise Content Management Graph by @PieterJanVA

+ US Flights & Airports by @_nicolemargaret

¢ Chess Games and Positions by @wefreema

+« Why JIRA should use Neo4J by @PieterJanVA

* Mystery Science Theater 3000 Actors and Characters by @virtualswede

+ Breaking Bad characters are interested in some products, let's see which are by @fforbeck

+ Ditching Grandma - Graphy Accounting by @ShaunDaley1
+ MotoGp Graph Gist by @ricshouse
+ European Royalty by @frant_hartm

* Product Catalog by @yaravind
Aflight planner will want to take into consideration how long it takes on average for a plane to travel from its gate to the runway, or
vice versa, at a given airport. The consequences for leaving customers sitting on a tarmac for too long can range from a few angry . A Slmple Meta_Data Mode.l b'y @perival

letters to a PR nightmare.

What is the average taxi time at each airport for both departures and
arrivals?

Query 2 L]

MATCH (a)<-[q:ORIGIN]-(), ()-[r:DESTINATION|DIVERTED_TO]->(a)
WITH a, ROUND(AVG(q.taxi_time)) AS avgl, ROUND(AVG(r.taxi_time)) AS avg2

° L
RETURN a.name AS Airport, avgl AS "Average Departure Taxi Time', avg2 AS ~Average Arrival Taxi Time tt S L I t u b C O e O
o - p . g : l

Airport Average Departure Taxi Average f’-\mval Taxi
Time Time

e . contrib/graphgist/wiki

Hartsfield-Jackson Atlanta International

18 9
Airport
Dallas/Fort Worth International Airport 13 8
O’Hare International Airport 13 6

What is the leading cause of departure delays at each airport?

Are the delays at a given airport mostly out of one’s control (weather delays) or are the delays mostly preventable (carrier delays)? A
flight planner would be interested to learn which of these types of delays are most prevalent at each of its airports.

https://github.com/neo4j-contrib/graphgist/wiki
https://github.com/neo4j-contrib/graphgist/wiki
https://github.com/neo4j-contrib/graphgist/wiki
https://github.com/neo4j-contrib/graphgist/wiki

Modeling Webinar

Coming soon...

(www.neotechnology.com/newsletter or §
@neodj if interested)

http://www.neotechnology.com/newsletter
http://www.neotechnology.com/newsletter
http://www.neotechnology.com/newsletter

Modeling Workshop

Coming soon...
(rik@neotechnology.com if interested) @

mailto:rik@neotechnology.com

And that’s it

@markhneedham

