
#neo4j

Graph Modeling Do’s and Don’ts

@markhneedham
mark.needham@neotechnology.com

#neo4j

Credit for the slides goes to Ian Robinson
@iansrobinson on twitter

#neo4j

Outline

• Property Graph Refresher

• A modeling workflow

• Modeling tips

• Testing your data model

#neo4j

Property Graph Refresher

#neo4j

Property Graph Data Model

#neo4j

Four Building Blocks

• Nodes

• Relationships

• Properties

• Labels

#neo4j

Nodes

#neo4j

Nodes

• Used to represent entities and complex value
types in your domain

• Can contain properties
– Used to represent entity attributes and/or

metadata (e.g. timestamps, version)

– Key-value pairs
• Java primitives

• Arrays

• null is not a valid value

– Every node can have different properties

#neo4j

Entities and Value Types

• Entities
– Have unique conceptual identity

– Change attribute values, but identity remains the
same

• Value types
– No conceptual identity

– Can substitute for each other if they have the
same value
• Simple: single value (e.g. colour, category)

• Complex: multiple attributes (e.g. address)

#neo4j

Relationships

#neo4j

Relationships

• Every relationship has a name and a direction
– Add structure to the graph

– Provide semantic context for nodes

• Can contain properties
– Used to represent quality or weight of

relationship, or metadata

• Every relationship must have a start node and
end node
– No dangling relationships

#neo4j

Relationships (continued)

Nodes can have more
than one relationship

Self relationships are allowed

Nodes can be connected by
more than one relationship

#neo4j

Variable Structure

• Relationships are defined with regard to node
instances, not classes of nodes

– Two nodes representing the same kind of “thing”
can be connected in very different ways

• Allows for structural variation in the domain

– Contrast with relational schemas, where foreign
key relationships apply to all rows in a table

• No need to use null to represent the absence of a
connection

#neo4j

Labels

#neo4j

Labels

• Every node can have zero or more labels

• Used to represent roles (e.g. user, product,
company)

– Group nodes

– Allow us to associate indexes and constraints with
groups of nodes

#neo4j

Four Building Blocks

• Nodes
– Entities

• Relationships
– Connect entities and structure domain

• Properties
– Entity attributes, relationship qualities, and

metadata

• Labels
– Group nodes by role

#neo4j

A modeling workflow

#neo4j

Models

Images: en.wikipedia.org

#neo4j

Design for Queryability

Model Query

#neo4j

User stories

#neo4j

Derive questions

Which people, who work for the same company
as me, have similar skills to me?

#neo4j

Identify entities

Which people, who work for the same company
as me, have similar skills to me?

person

company

skill

#neo4j

Identify relationships between entities

Which people, who work for the same company
as me, have similar skills to me?

person WORKS_FOR company

person HAS_SKILL skill

#neo4j

Convert to Cypher paths

person WORKS_FOR company

person HAS_SKILL skill

(person)-[:WORKS_FOR]->(company),

(person)-[:HAS_SKILL]->(skill)

#neo4j

Cypher paths

(person)-[:WORKS_FOR]->(company),

(person)-[:HAS_SKILL]->(skill)

(company)<-[:WORKS_FOR]-(person)-[:HAS_SKILL]->(skill)

#neo4j

Data model

(company)<-[:WORKS_FOR]-(person)-[:HAS_SKILL]->(skill)

#neo4j

Formulating question as graph pattern

Which people, who work for the same company
as me, have similar skills to me?

#neo4j

Cypher query

Which people, who work for the same company
as me, have similar skills to me?

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),

 (company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)

WHERE me.name = {name}

RETURN colleague.name AS name,

 count(skill) AS score,

 collect(skill.name) AS skills

ORDER BY score DESC

#neo4j

Graph pattern

Which people, who work for the same company
as me, have similar skills to me?

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),

 (company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)

WHERE me.name = {name}

RETURN colleague.name AS name,

 count(skill) AS score,

 collect(skill.name) AS skills

ORDER BY score DESC

#neo4j

Anchor pattern in graph

Which people, who work for the same company
as me, have similar skills to me?

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),

 (company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)

WHERE me.name = {name}

RETURN colleague.name AS name,

 count(skill) AS score,

 collect(skill.name) AS skills

ORDER BY score DESC

If an index for
Person.name exists,

Cypher will use it

#neo4j

Create projection of results

Which people, who work for the same company
as me, have similar skills to me?

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),

 (company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)

WHERE me.name = {name}

RETURN colleague.name AS name,

 count(skill) AS score,

 collect(skill.name) AS skills

ORDER BY score DESC

#neo4j

First match

#neo4j

Second match

#neo4j

Third match

#neo4j

Running the query

+-----------------------------------+

| name | score | skills |

+-----------------------------------+

| "Lucy" | 2 | ["Java","Neo4j"] |

| "Bill" | 1 | ["Neo4j"] |

+-----------------------------------+

2 rows

#neo4j

From user story to model

MATCH (company)<-[:WORKS_FOR]-(me:person)-[:HAS_SKILL]->(skill),

 (company)<-[:WORKS_FOR]-(colleague)-[:HAS_SKILL]->(skill)

WHERE me.name = {name}

RETURN colleague.name AS name,

 count(skill) AS score,

 collect(skill.name) AS skills

ORDER BY score DESC

(company)<-[:WORKS_FOR]-(person)-[:HAS_SKILL]->(skill)

person WORKS_FOR company

person HAS_SKILL skill

? Which people, who work for the same
company as me, have similar skills to me?

#neo4j

Modeling tips

#neo4j

Nodes for things

#neo4j

Labels for grouping

#neo4j

Relationships for structure

#neo4j

Properties vs Relationships

#neo4j

Use relationships when…
• You need to specify the weight, strength, or

some other quality of the relationship

• AND/OR the attribute value comprises a
complex value type (e.g. address)

• Examples:

– Find all my colleagues who are expert (relationship
quality) at a skill (attribute value) we have in
common

– Find all recent orders delivered to the same
delivery address (complex value type)

#neo4j

Find Expert Colleagues

#neo4j

Find Expert Colleagues
MATCH (user:Person)-[:HAS_SKILL]->(skill),

 (user)-[:WORKS_FOR]->(company),

 (colleague)-[:WORKS_FOR]->(company),

 (colleague)-[r:HAS_SKILL]->(skill)

WHERE user.name = {name} AND r.level = {skillLevel}

RETURN colleague.name AS name, skill.name AS skill

#neo4j

Relate and Filter
MATCH (user:Person)-[:HAS_SKILL]->(skill),

 (user)-[:WORKS_FOR]->(company),

 (colleague)-[:WORKS_FOR]->(company),

 (colleague)-[r:HAS_SKILL]->(skill)

WHERE user.name = {name} AND r.level = {skillLevel}

RETURN colleague.name AS name, skill.name AS skill

#neo4j

Use properties when…
• There’s no need to qualify the relationship

• AND the attribute value comprises a simple
value type (e.g. colour)

• Examples:

– Find those projects written by contributors to my
projects that use the same language (attribute
value) as my projects

#neo4j

Find Projects With Same Languages

#neo4j

Find Projects With Same Languages

MATCH (user:User)-[:WROTE]->(project:Project),

 (contributor)-[:CONTRIBUTED_TO]->(project),

 (contributor)-[:WROTE]->(otherProject:Project)

WHERE user.username = {username}

 AND ANY (otherLanguage IN otherProject.language

 WHERE ANY (language IN project.language

 WHERE language = otherLanguage))

RETURN contributor.username AS username,

 otherProject.name AS project,

 otherProject.language AS languages

#neo4j

Relate and Filter

MATCH (user:User)-[:WROTE]->(project:Project),

 (contributor)-[:CONTRIBUTED_TO]->(project),

 (contributor)-[:WROTE]->(otherProject:Project)

WHERE user.username = {username}

 AND ANY (otherLanguage IN otherProject.language

 WHERE ANY (language IN project.language

 WHERE language = otherLanguage))

RETURN contributor.username AS username,

 otherProject.name AS project,

 otherProject.language AS languages

#neo4j

If Performance is Critical…

• Small property lookup on a node will be
quicker than traversing a relationship

– But traversing a relationship is still faster than a
SQL join…

• However, many small properties on a node, or
a lookup on a large string or large array
property will impact performance

– Always performance test against a
representative dataset

#neo4j

Relationship Granularity

#neo4j

General Relationships
• Qualified by property

#neo4j

Easy to Query Across All Types

MATCH (person)-[a:ADDRESS]->(address)

WHERE person.name = {name}

RETURN a.type AS type,

 address.firstline AS firstline

#neo4j

Property Access to Discover Sub-Types

MATCH (person)-[a:ADDRESS]->(address)

WHERE person.name = {name}

 AND a.type = {type}

RETURN address.firstline AS firstline

#neo4j

Specific Relationships

#neo4j

Easy to Query Specific Types

MATCH (person)-[:HOME_ADDRESS]->(address)

WHERE person.name = {name}

RETURN address.firstline AS firstline

#neo4j

Cumbersome to Discover All Types

MATCH (person)-

 [a:HOME_ADDRESS|WORK_ADDRESS]

 ->(address)

WHERE person.name = {name}

RETURN type(a) AS type,

 address.firstline AS firstline

#neo4j

Cumbersome to Discover All Types

MATCH (person)-

 [a:HOME_ADDRESS|WORK_ADDRESS]

 ->(address)

WHERE person.name = {name}

RETURN type(a) AS type,

 address.firstline AS firstline

#neo4j

Best of Both Worlds

#neo4j

Don’t model entities as relationships

• Limits data model evolution

– Unable to associate more entities

• Entities sometimes hidden in a verb

• Smells:

– Lots of attribute-like properties

– Property value redundancy

– Heavy use of relationship indexes

#neo4j

Example: Reviews

#neo4j

Add another review

#neo4j

And another

#neo4j

Problems

• Redundant data
(2 x amazon.co.uk)

• Difficult to find
reviews for source

• Users can’t comment
on reviews

#neo4j

Revised model

#neo4j

Model actions in terms of products

#neo4j

Testing

#neo4j

Test-driven data modeling

• Unit test with small, well-known datasets

– Inject small graphs to test individual queries

– Datasets express understanding of domain

– Use the tests to identify regressions as your data
model evolves

• Performance test queries against
representative dataset

#neo4j

Query times proportional to size of
subgraph searched

#neo4j

Query times proportional to size of
subgraph searched

#neo4j

Query times proportional to size of
subgraph searched

#neo4j

Query times remain constant …

#neo4j

… unless subgraph searched grows

#neo4j

Unit test fixture
public class ColleagueFinderTest {

 private static GraphDatabaseService db;

 private static ColleagueFinder finder;

 @BeforeClass

 public static void init() {

 db = new TestGraphDatabaseFactory().newImpermanentDatabase();

 ExampleGraph.populate(db);

 finder = new ColleagueFinder(db);

 }

 @AfterClass

 public static void shutdown() {

 db.shutdown();

 }

}

#neo4j

ImpermanentGraphDatabase

• In-memory

• For testing only

 <dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-kernel</artifactId>

 <version>${project.version}</version>

 <type>test-jar</type>

 <scope>test</scope>

 </dependency>

#neo4j

Create sample data
public static void populate(GraphDatabaseService db) {

 ExecutionEngine engine = new ExecutionEngine(db);

 String cypher =

 "CREATE ian:person VALUES {name:'Ian'},\n" +

 " bill:person VALUES {name:'Bill'},\n" +

 " lucy:person VALUES {name:'Lucy'},\n" +

 " acme:company VALUES {name:'Acme'},\n" +

 // Cypher continues...

 " (bill)-[:HAS_SKILL]->(neo4j),\n" +

 " (bill)-[:HAS_SKILL]->(ruby),\n" +

 " (lucy)-[:HAS_SKILL]->(java),\n" +

 " (lucy)-[:HAS_SKILL]->(neo4j)";

 engine.execute(cypher);

}

#neo4j

Unit test
@Test

public void shouldFindColleaguesWithSimilarSkills() throws Exception {

 // when

 Iterator<Map<String, Object>> results = finder.findFor("Ian");

 // then

 assertEquals("Lucy", results.next().get("name"));

 assertEquals("Bill", results.next().get("name"));

 assertFalse(results.hasNext());

}

#neo4j

Object under test
public class ColleagueFinder {

 private final ExecutionEngine cypherEngine;

 public ColleagueFinder(GraphDatabaseService db) {

 this.cypherEngine = new ExecutionEngine(db);

 }

 public Iterator<Map<String, Object>> findFor(String name) {

 ...

 }

}

#neo4j

findFor() method
public Iterator<Map<String, Object>> findFor(String name) {

 String cypher =

 "MATCH (me:person)-[:WORKS_FOR]->(company),\n" +

 " (me)-[:HAS_SKILL]->(skill),\n" +

 " (colleague)-[:WORKS_FOR]->(company),\n" +

 " (colleague)-[:HAS_SKILL]->(skill)\n" +

 "WHERE me.name = {name}\n" +

 "RETURN colleague.name AS name,\n" +

 " count(skill) AS score,\n" +

 " collect(skill.name) AS skills\n" +

 "ORDER BY score DESC";

 Map<String, Object> params = new HashMap<String, Object>();

 params.put("name", name);

 return cypherEngine.execute(cypher, params).iterator();

}

#neo4j

Unmanaged extension
@Path("/similar-skills")

public class ColleagueFinderExtension {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 private final ColleagueFinder colleagueFinder;

 public ColleagueFinderExtension(@Context GraphDatabaseService db) {

 this.colleagueFinder = new ColleagueFinder(db);

 }

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Path("/{name}")

 public Response getColleagues(@PathParam("name") String name)

 throws IOException {

 String json = MAPPER

 .writeValueAsString(colleagueFinder.findFor(name));

 return Response.ok().entity(json).build();

 }

}

#neo4j

JAX-RS annotations
@Path("/similar-skills")

public class ColleagueFinderExtension {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 private final ColleagueFinder colleagueFinder;

 public ColleagueFinderExtension(@Context GraphDatabaseService db) {

 this.colleagueFinder = new ColleagueFinder(db);

 }

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Path("/{name}")

 public Response getColleagues(@PathParam("name") String name)

 throws IOException {

 String json = MAPPER

 .writeValueAsString(colleagueFinder.findFor(name));

 return Response.ok().entity(json).build();

 }

}

#neo4j

Map HTTP request to object+method
@Path("/similar-skills")

public class ColleagueFinderExtension {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 private final ColleagueFinder colleagueFinder;

 public ColleagueFinderExtension(@Context GraphDatabaseService db) {

 this.colleagueFinder = new ColleagueFinder(db);

 }

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Path("/{name}")

 public Response getColleagues(@PathParam("name") String name)

 throws IOException {

 String json = MAPPER

 .writeValueAsString(colleagueFinder.findFor(name));

 return Response.ok().entity(json).build();

 }

}

GET /similar-skills /Sue

#neo4j

Database injected by server
@Path("/similar-skills")

public class ColleagueFinderExtension {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 private final ColleagueFinder colleagueFinder;

 public ColleagueFinderExtension(@Context GraphDatabaseService db) {

 this.colleagueFinder = new ColleagueFinder(db);

 }

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Path("/{name}")

 public Response getColleagues(@PathParam("name") String name)

 throws IOException {

 String json = MAPPER

 .writeValueAsString(colleagueFinder.findFor(name));

 return Response.ok().entity(json).build();

 }

}

#neo4j

Generate and format response
@Path("/similar-skills")

public class ColleagueFinderExtension {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 private final ColleagueFinder colleagueFinder;

 public ColleagueFinderExtension(@Context GraphDatabaseService db) {

 this.colleagueFinder = new ColleagueFinder(db);

 }

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Path("/{name}")

 public Response getColleagues(@PathParam("name") String name)

 throws IOException {

 String json = MAPPER

 .writeValueAsString(colleagueFinder.findFor(name));

 return Response.ok().entity(json).build();

 }

}

#neo4j

Extension test fixture
public class ColleagueFinderExtensionTest {

 private static CommunityNeoServer server;

 @BeforeClass

 public static void startServer() throws IOException

 {

 server = CommunityServerBuilder.server()

 .withThirdPartyJaxRsPackage(

 "org.neo4j.good_practices", "/colleagues")

 .build();

 server.start();

 ExampleGraph.populate(server.getDatabase().getGraph());

 }

 @AfterClass

 public static void stopServer() {

 server.stop();

 }

}

#neo4j

CommunityServerBuilder

• Programmatic configuration

 <dependency>

 <groupId>org.neo4j.app</groupId>

 <artifactId>neo4j-server</artifactId>

 <version>${project.version}</version>

 <type>test-jar</type>

 </dependency>

#neo4j

Testing extensions
@Test

public void shouldReturnColleaguesWithSimilarSkills() throws Exception {

 Client client = Client.create(new DefaultClientConfig());

 WebResource resource = client

 .resource("http://localhost:7474/colleagues/similar-skills/Ian");

 ClientResponse response = resource

 .accept(MediaType.APPLICATION_JSON)

 .get(ClientResponse.class);

 List<Map<String, Object>> results = new ObjectMapper()

 .readValue(response.getEntity(String.class), List.class);

 // Assertions

 ...

#neo4j

Testing extensions (continued)

 ...

 assertEquals(200, response.getStatus());

 assertEquals(MediaType.APPLICATION_JSON,

 response.getHeaders().get("Content-Type").get(0));

 assertEquals("Lucy", results.get(0).get("name"));

 assertThat((Iterable<String>) results.get(0).get("skills"),

 hasItems("Java", "Neo4j"));

}

#neo4j

Examples to follow

• Neo4j Good Practices
Accompanying code for some of the examples in this
talk.https://github.com/iansrobinson/neo4j-good-
practices

• Cypher-RS
A server extension that allows you to configure fixed
REST end points for cypher queries.
https://github.com/jexp/cypher-rs

https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/iansrobinson/neo4j-good-practices
https://github.com/jexp/cypher-rs
https://github.com/jexp/cypher-rs
https://github.com/jexp/cypher-rs

#neo4j

Learning More

#neo4j

Graph Databases Book

www.graphdatabases.com

http://www.graphdatabases.com

#neo4j

Neo4j Manual Modeling Examples

Google “neo4j modeling manual”

#neo4j

https://github.com/neo4j-
contrib/graphgist/wiki

Cypher Modeling Challenge

https://github.com/neo4j-contrib/graphgist/wiki
https://github.com/neo4j-contrib/graphgist/wiki
https://github.com/neo4j-contrib/graphgist/wiki
https://github.com/neo4j-contrib/graphgist/wiki

#neo4j

Modeling Webinar

Coming soon…
(www.neotechnology.com/newsletter or

@neo4j if interested)

http://www.neotechnology.com/newsletter
http://www.neotechnology.com/newsletter
http://www.neotechnology.com/newsletter

#neo4j

Modeling Workshop

Coming soon…
(rik@neotechnology.com if interested)

mailto:rik@neotechnology.com

#neo4j

And that’s it

@markhneedham

