Coming Down From The Trees:
Future of the Evolution of Markup?

Patrick Durusau (Society of Biblical Literature)
pdurusau@emory.edu

Matthew Brook O’'Donnell (OpenText.org)
matt@opentext.org



<altTitle>
Declaring Trees:

Future of the Evolution of Markup?
</altTitle>

Patrick Durusau (Society of Biblical Literature)
pdurusau@emory.edu

Matthew Brook O’'Donnell (OpenText.org)
matt@opentext.org



ACH/ALLC 2002

« Michael Sperberg-McQueen (The Markup
Bear) was heard to say:



Markup, Syntax and Trees

e One tree per document
— More precisely, one root per document
— Tree syntax expressed from that single root
— All markup recognized from that root

» Causes problems for text encoding
— QOverlapping hierarchies

— Non-nesting phenomena
— Complex relationships



Prior Solutions |

Bottom-Up Virtual Hierarchies (BUVH)
Concur (cf. Sema Group implementation)
Fragmentation

Layered Markup and Annotation
Language (LMNL)

Milestones
Multiple versions



Prior Solutions |l

Non-SGML/XML markup
Standoff Markup

Prolog database

Virtual Joins



Success of Solutions Varies

All workarounds for:

— single root plus tree syntax
— all markup recognized

Lack of broad community experience

Sensitive to editing (multiple versions,
BUVH, standoff)

Utility depends on ability to process



Motivations

Non-Trivial texts require:

— Complex relationships between elements in a
text

— Differing views of the text (physical vs. logical
structure)

— Overlapping and differing views of structures
within a text (Ex., commentators who see
different formal and syntactic structures)

— Versioning



“Treeness” and Markup

* A markup tree has how many roots”?
— Answer: 1

 Example: XML document:
<?xml version="1.0" standalone="yes""?>
<text>
<p>A short document.</p>
</text>



“Treeness” and Markup |l

Reality Check
— This tree has more than onel

Agreed markup trees have only one
Question is: When is that required?
Answer: When it is processed!

Solution: Declare the root of a markup
tree for processing



Recognizing Markup

Documents are divided into:

— Markup
— PCDATA

When do we need to recognize markup?
Answer: When it is processed!

Solution: Declare the markup to be
recognized for processing



Markup vs. Processing

Current Model of Markup and Processing:
— Single fixed root defined in syntax
— Markup defined in syntax

Isn’t processing different from markup?
What if we declare a root for processing?

What if we declare the markup to
process?

Result: Just-In-Time-Trees (JITTs)!



Just-In-Time-Trees

Moves root requirement from syntax to
processing

Moves markup (recognized) from syntax
to processing

No more overlap, simply processing
declared roots and markup

Markup limited only by your imagination



Current Practice vs. JITTs

Syntax
(fixed)

Root

Markup

VS. Processing
(declared)

Root

Markup

4

Parser



Implementing JITTs

 Requirements
— Recognizing markup

— Discard markup/PCDATA prior to declared
root

— Discard markup/PCDATA after leaves
» Recognizing markup
— SAX Filter (but using DTD or Schema)

» Discarding PCDATA
— Similar to XPath and subtrees



JITTs

Compatible with legacy texts
Construction of light-weight DOM trees

Markup can represent the text as it is
found “in the wild” (rather than pruned)

No tree requirement for markup syntax

Markup based on attribute values (here
be versioning, Zanadu?)



Evaluation of JITTs |

« Extreme 2001 — 10 Requirements
— Formal simplicity

— Capacity to represent all occurring or
imaginable kinds of structures

— Suitability for formal or mechanical validation

— Clear identity with the notations needed for
simpler cases

— Allow for conditional indexing and processing



Evaluation of JITTs Il

— Allow for extraction of well-formed subtrees
and documents

— Allow for query of the position of the element
between two or more hierarchies

— Use standard XML syntax and mechanisms

— Validation and processing must be possible
with standard XML software

— Can be extracted from existing documents
encoded in XML markup



Evaluation of JITTs Il

« JITTs also support:
— Building documents with declared markup
— SGML files

— non-SGML/XML files (cf. MECS, TexMECS,
data tag)

 All by changing markup recognition (ISO
8879 robustness question settled)



Future Work

Use of Attributes, DTDs, Range Algebra,
Regexes, Schemas, to declare root and
markup

Data structures for parse forests

Layering SVG or VRML for display of
multiple trees

Using TAG (Tree Adjoining Grammar)
parsers for parsing multiple trees

Tree discovery techniques



Additional Resources

DyALog
http://atoll.inria.fr/~clerger/DyALog/dyalog_toc.html

Prague Stringology Club
http://cs.felk.cvut.cz/psc/

X-Diff -- Detecting Changes in XML Documents
http://www.cs.wisc.edu/~yuanwang/xdiff.html

Xerces2 Java Parser
http://xml.apache.org/xerces2-j/index.html

XTAG Project
http://www.cis.upenn.edu/~xtag/



Support for Research

« Support organizations that make this
research possible!

— SBL.: http://www.sbl-site.org
— OpenText.org: http://www.opentext.org

— TELI: http://www.tei-c.org



