
Coming Down From The Trees:
Future of the Evolution of Markup?

Patrick Durusau (Society of Biblical Literature)
pdurusau@emory.edu

Matthew Brook O’Donnell (OpenText.org)
matt@opentext.org

<altTitle>
Declaring Trees:

Future of the Evolution of Markup?
</altTitle>

Patrick Durusau (Society of Biblical Literature)
pdurusau@emory.edu

Matthew Brook O’Donnell (OpenText.org)
matt@opentext.org

ACH/ALLC 2002

• Michael Sperberg-McQueen (The Markup
Bear) was heard to say:

•Only You Can Stop
the Deforestation of
Texts!

Markup, Syntax and Trees

• One tree per document
– More precisely, one root per document
– Tree syntax expressed from that single root
– All markup recognized from that root

• Causes problems for text encoding
– Overlapping hierarchies
– Non-nesting phenomena
– Complex relationships

Prior Solutions I

• Bottom-Up Virtual Hierarchies (BUVH)
• Concur (cf. Sema Group implementation)
• Fragmentation
• Layered Markup and Annotation

Language (LMNL)
• Milestones
• Multiple versions

Prior Solutions II

• Non-SGML/XML markup
• Standoff Markup
• Prolog database
• Virtual Joins

Success of Solutions Varies

• All workarounds for:
– single root plus tree syntax
– all markup recognized

• Lack of broad community experience
• Sensitive to editing (multiple versions,

BUVH, standoff)
• Utility depends on ability to process

Motivations

• Non-Trivial texts require:
– Complex relationships between elements in a

text
– Differing views of the text (physical vs. logical

structure)
– Overlapping and differing views of structures

within a text (Ex., commentators who see
different formal and syntactic structures)

– Versioning

“Treeness” and Markup

• A markup tree has how many roots?
– Answer: 1

• Example: XML document:
<?xml version=“1.0” standalone=“yes”?>
<text>

<p>A short document.</p>
</text>

“Treeness” and Markup II

• Reality Check
– This tree has more than one!

• Agreed markup trees have only one
• Question is: When is that required?
• Answer: When it is processed!
• Solution: Declare the root of a markup

tree for processing

Recognizing Markup

• Documents are divided into:
– Markup
– PCDATA

• When do we need to recognize markup?
• Answer: When it is processed!
• Solution: Declare the markup to be

recognized for processing

Markup vs. Processing

• Current Model of Markup and Processing:
– Single fixed root defined in syntax
– Markup defined in syntax

• Isn’t processing different from markup?
• What if we declare a root for processing?
• What if we declare the markup to

process?
• Result: Just-In-Time-Trees (JITTs)!

Just-In-Time-Trees

• Moves root requirement from syntax to
processing

• Moves markup (recognized) from syntax
to processing

• No more overlap, simply processing
declared roots and markup

• Markup limited only by your imagination

Current Practice vs. JITTs
Syntax vs. Processing
(fixed) (declared)

Root Root

Markup Markup

 Parser

Implementing JITTs

• Requirements
– Recognizing markup
– Discard markup/PCDATA prior to declared

root
– Discard markup/PCDATA after leaves

• Recognizing markup
– SAX Filter (but using DTD or Schema)

• Discarding PCDATA
– Similar to XPath and subtrees

JITTs

• Compatible with legacy texts
• Construction of light-weight DOM trees
• Markup can represent the text as it is

found “in the wild” (rather than pruned)
• No tree requirement for markup syntax
• Markup based on attribute values (here

be versioning, Zanadu?)

Evaluation of JITTs I

• Extreme 2001 – 10 Requirements
– Formal simplicity
– Capacity to represent all occurring or

imaginable kinds of structures
– Suitability for formal or mechanical validation
– Clear identity with the notations needed for

simpler cases
– Allow for conditional indexing and processing

Evaluation of JITTs II

– Allow for extraction of well-formed subtrees
and documents

– Allow for query of the position of the element
between two or more hierarchies

– Use standard XML syntax and mechanisms
– Validation and processing must be possible

with standard XML software
– Can be extracted from existing documents

encoded in XML markup

Evaluation of JITTs III

• JITTs also support:
– Building documents with declared markup
– SGML files
– non-SGML/XML files (cf. MECS, TexMECS,

data tag)
• All by changing markup recognition (ISO

8879 robustness question settled)

Future Work

• Use of Attributes, DTDs, Range Algebra,
Regexes, Schemas, to declare root and
markup

• Data structures for parse forests
• Layering SVG or VRML for display of

multiple trees
• Using TAG (Tree Adjoining Grammar)

parsers for parsing multiple trees
• Tree discovery techniques

Additional Resources

DyALog
http://atoll.inria.fr/~clerger/DyALog/dyalog_toc.html

Prague Stringology Club
http://cs.felk.cvut.cz/psc/

X-Diff -- Detecting Changes in XML Documents
http://www.cs.wisc.edu/~yuanwang/xdiff.html

Xerces2 Java Parser
http://xml.apache.org/xerces2-j/index.html

XTAG Project
http://www.cis.upenn.edu/~xtag/

Support for Research

• Support organizations that make this
research possible!

– SBL: http://www.sbl-site.org

– OpenText.org: http://www.opentext.org

– TEI: http://www.tei-c.org

