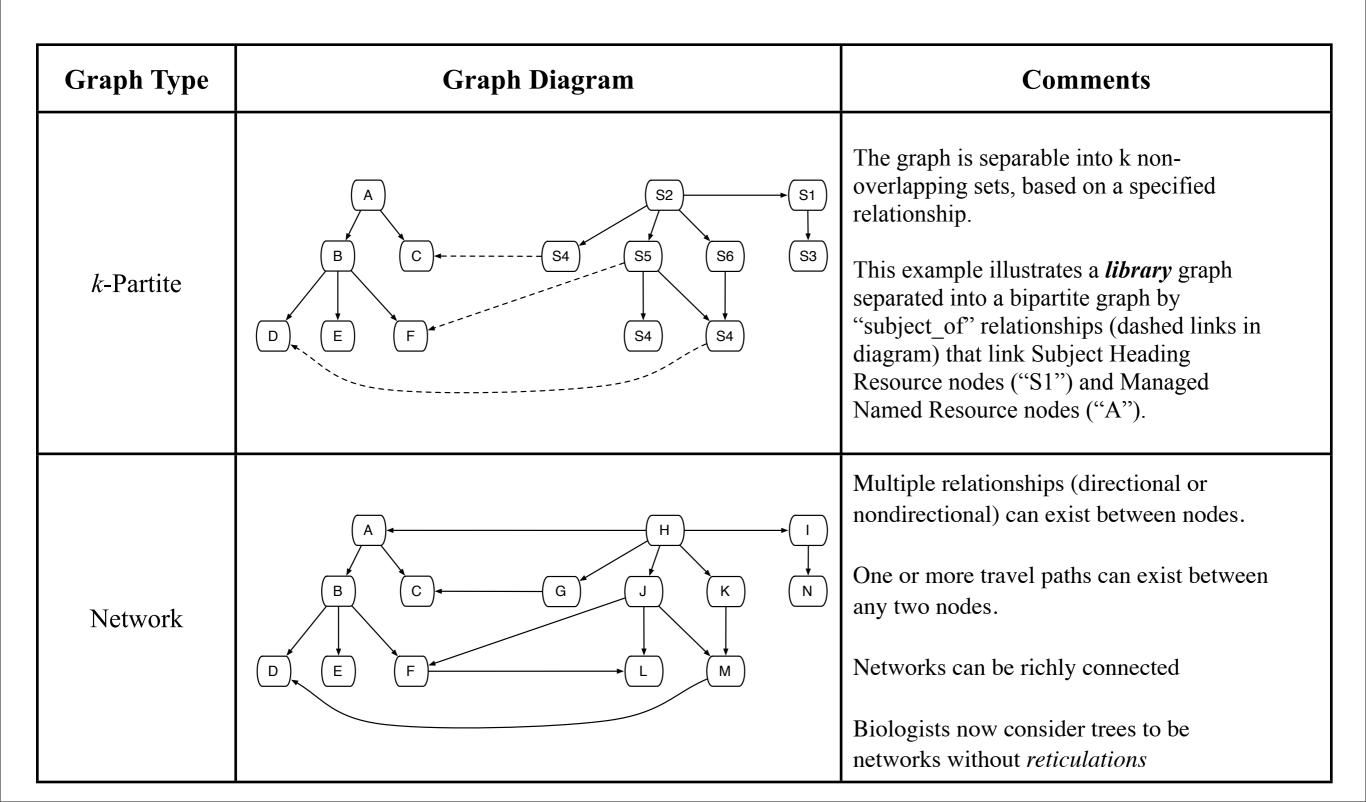
An Ethnomathematical Approach to Cultural Heritage Resource Description

- Is it possible to develop an Ethnomathematically informed perspective on Cultural Heritage **Resource** description?
 - **Resource** description in general and cataloging in particular involve the construction of descriptive structures entities with attributes and relationships defined between those entities
 - These descriptive structures can be represented in *graph* form as combined *sets* {a b} of nodes and links/edges that represent (a) **Resources** and their attributes and (b) **Resource** relationships
 - Cultural Heritage **Resource** description graphs exhibit varying degrees of complexity in terms of node and link quantities and types
 - Graph-theoretical expressions of structure and complexity can be given meaning from a Cultural Heritage **Resource** description/cataloging theory point of view


We All Speak Prose Here: Graph Structures In Resource Description And Access

- Define increasingly complex graph structures that could represent portions of different types of Cultural Heritage Resource descriptions
 - Graph structures will be used as part of more task-specific types of resource descriptions
- Discuss which graph structure combinations appear in different Cultural Heritage institutions and in the World Wide Web
- Discuss how **Resource** description structures interact with institutional missions and "self-concepts" (á la Abbott's *Flatland*)

We All Speak Prose Here: Graph Structures In Resource Description And Access

Graph Type	Graph Diagram	Comments			
Empty/Edgeless	A B D C E F	An edgeless graph consists of a set of nodes without links (relationships): {{ABCDEF}, {Ø}}. * Retrieval sets from Online Public Access Catalogs can be represented as edgeless graphs. They can be subjected to Boolean operations, and then ordered temporarily for display purposes.			
Tree (AKA A Connected Acyclic Graph)	D E F B C B A	* Nontrivial trees have at least two end nodes. * The deletion of any tree link disconnects the tree. * There is only one travel path between any two nodes in a tree. * Trees are minimally - most economically - connected structures. * A forest is a graph whose components are trees Buckley & Lewinter (2003)			
Directed Tree (Sequence & Hierarchy)	D E F B C B A	Hierarchies are represented by tree graphs whose arrowed links specify the direction of a relationship. * A <i>sequence is</i> a directed tree with no branches (<i>trivial tree</i>) * A polyhierarchy is a forest of hierarchies(?)			

We All Speak Prose Here: Graph Structures In Resource Description And Access

Structures & Institutions: It Begins With *Flatland*

- Flatland (1884) Science fiction novella by Edwin Abbott Abbott
 - Social commentary on the British class system
 - Featured geometric characters who lived in lines, planes, volumes, hypervolumes, etc.
 - Spatial, social and self-imposed constraints on thought, "intuition," and action based on geometric characteristics
 - Enlightenment as the ability to engage in dimensional thinking independently of one's geometrical level

Binland, Shelfland, Libraryland, & Webland: Resource Description & Access Subcultures

- Binland Resources aggregated by one or more Resource characteristics. Bins may be nested in other bins
- Shelfland Resources ordered along a single Resource characterstic (organic growth ≈ time dimension)
- *Archiveland* One or more hierarchically arranged *Binlands* and/or *Shelflands* managed by a responsible party. Established **Resource** collection, description, and preservation procedures exist

Binland, Shelfland, Libraryland, & Webland: Resource Description & Access Subcultures

- Libraryland Resources organized into bins, simple & complex hierarchies, and de-facto networks following one or more "authoritative" set of cataloging rules. Structured or unstructured reference Resources are used to support access
- Webland Resources organized into bins, simple and complex hierarchies, de-facto and explicit networks. Organization is variable because a Webland can contain one or more of all of the other lands

We All Speak Prose Here: Graph Structures In Support of Resource Description And Access

Bin	Edgeless, Subgraph	A B D C F	A B G I K L G H W N	-	-		
Shelf	Edgeless, Sequential	A B D C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-		
Archive	Edgeless, Sequential, Subgraph, Hierarchy/ Tree	A B D C	$\begin{array}{c} A \longrightarrow B \longrightarrow D \\ \hline \\ C \longrightarrow F \longrightarrow E \end{array}$	A B B G I K L O H W N	B C B C	-	
Library	Edgeless, Sequential, Subgraph, Hierarchy/ Tree," <i>k</i> -Partite	A B D C F	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A B B G I K L O H M N	A D E F B C B C	B C S4 S5	
Web	Edgeless, Sequential Subgraph, Hierarchy/ Tree," <i>k</i> -Partite, De-Facto & Explicit Network	A B D C F	$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & &$	A B B G I K L B F M N N	A D E F B C B C		