
Just-In-Time-Trees:
Recognizing Markup on Demand

University of Kentucky
Patrick Durusau
8 October 2003

Overview

• Why overlapping hierarchies?
• Prior approaches
• Bottom-Up-Virtual-Hierarchies
• Recognizing Markup
• Just-In-Time-Trees
• Future Research

Why overlapping hierarchies?

• Different interpretations of a text
• Structures that do not “nest” properly
• Complex textual traditions with multiple

witnesses and variants
• Recording physical layout of text and

other analysis
• Versioning

Overlapping Example

Matthew 3:8 Bear fruit that befits
repentance,

Matthew 3:9 and do not presume to say to
yourselves, ‘We have
Abraham as our father’; for I
tell you, God is able from
these stones to raise up
children of Abraham.

Matthew 3:8-9 First Choice
<verse id=“Matt.3.8”>
 Bear fruit that befits repentance,
</verse>
<verse=“Matt.3.9”>
 and do not presume to say to yourselves,

‘We have Abraham as our father’; for I tell
you, God is able from these stones to
raise up children of Abraham.

</verse>

Matthew 3:8-9: Second Choice
<sentence>
Bear fruit that befits repentance, and do not

presume to say to yourselves, ‘We have
Abraham as our father’; for I tell you, God
is able from these stones to raise up
children of Abraham.

</sentence>

Matthew 3:8-9 Verboten!
<verse id=“Matt.3.8”>
 <sentence>
 Bear fruit that befits repentance,
</verse>
<verse=“Matt.3.9”>
• and do not presume to say to yourselves, ‘We have

Abraham as our father’; for I tell you, God is able from
these stones to raise up children of Abraham.

</verse>
 </sentence>

Other Examples:

• Open a textbook or journal
– Paragraph crosses page boundary
– Quote crosses a paragraph
– Footnote crosses a page boundary
– Highlighting begins in one sentence and ends

in another
• All of these require overlapping markup

Prior Approaches

• CONCUR (cf Sema Group)
• Fragmentation (virtual joins)
• Milestones
• Standoff Markup
• Non-SGML/XML markup (Tex-Mecs,

LMNL)
• Bottom-Up-Virtual-Hierarchies

Concur
<(vh)verse id=“Matt.3.8”>
 <(sh)sentence>
 Bear fruit that befits repentance,
</(vh)verse>
<(vh)verse=“Matt.3.9”>
• and do not presume to say to yourselves, ‘We have

Abraham as our father’; for I tell you, God is able from
these stones to raise up children of Abraham.

</(vh)verse>
 </(sh)sentence>

Fragmentation
<verse id=“Matt.3.8”>
 <sentence id=“Matt.pt1”>
 Bear fruit that befits repentance, </sentence>
</verse>
<verse=“Matt.3.9”> <sentence id=“Matt.pt2”>
• and do not presume to say to yourselves, ‘We have

Abraham as our father’; for I tell you, God is able from
these stones to raise up children of Abraham. </sentence>

</verse>
Elsewhere <join targets=“Matt.pt1 Matt.pt2”

result=“sentence” />

Milestones
<verse id=“Matt.3.8”>

<ss id=“s1”/>
Bear fruit that befits repentance,

</verse>
<verse=“Matt.3.9”>
• and do not presume to say to yourselves, ‘We have

Abraham as our father’; for I tell you, God is able from
these stones to raise up children of Abraham.

</verse>
<se corresp=“s1”/>

Standoff Markup
 <linkPoint verse id=“Matt.3.8”>

<linkPoint sentence>
Bear fruit that befits repentance,

<linkPoint /verse>
<linkPoint verse=“Matt.3.9”>

• and do not presume to say to yourselves, ‘We have
Abraham as our father’; for I tell you, God is able from
these stones to raise up children of Abraham.
< linkPoint /verse>

<linkPoint /sentence>

Non-SGML/XML Syntaxes

• Tex-MECS: Wittengenstein Project
• LMNL: Tennison and Piez
• Both develop non-SGML/XML syntaxes

that currently lack processor support.
• LMNL syntax is based on core range

algrebra, which allows layering of ranges
of text, one upon another.

Bottom-Up Virtual Hierarchies

• Observations:
– Membership of PCDATA in a hierarchy
– Membership in multiple hierarchies

• Question: How to represent in standard
XML?

• Atomic PCDATA (word division)
• Base file with XML Membership XPath

expression for each hierarachy

Bottom-Up Virtual Hierarchies II

• Sound verbose?
<w id="w4"

sn:clauses="/clauses/clause[1][@id='c1']/a[1]/*[1]"
tx:text="/text/para[1][@id='p1']/*[4]"
pg:pages="/pages/page[2][@id='p2']/line[1][@id='l1']/*[1]"

>in</w>

<w id="w5"
sn:clauses="/clauses/clause[1][@id='c1']/a[1]/*[2]"
tx:text="/text/para[1][@id='p1']/*[5]"
pg:pages="/pages/page[2][@id='p2']/line[1][@id='l1']/*[2]"
vr:variants="/variants/app[2][@id='tv2']/rdg[1][@wit='C'][@val='an']"

>a</w>

Bottom-Up Virtual Hierarchies III

• Represents all possible hierarchies
• Allows querying across hierarchies
• But:

– Fixed (like traditional markup)
– Fragile (like standoff markup)
– Non-standard syntax
– Requires pre-parsing of data
– Verbose

Lessons of BUVH

• Markup is metadata about PCDATA
– Membership of PCDATA in hierarchies
– PCDATA should be primary, markup

secondary
• Markup is asserted/recognized during

processing
– Not fixed at time of entry, but upon demand

from the processor

Recognizing Markup

• What composes a markup tree?
– Elements/PCDATA

• How to declare a markup tree?
– DTD or schema

• But, what is a markup tree really?
– A language, based on a meta-language

• And how are languages defined?

Defining A Language

• Standard Language Definition
– A language L is a set of strings over an

alphabet
– SGML/XML parsers require:

• Language predefined as <, </
• Tokens must nest into a tree
• Only defining tokens, not the language
• Markup vs. PCDATA distinction fixed

– Results in monolingual parsers

Multilingual Parsers

• What is needed?
– Definition of lexical level
– Definition of parsing level

• (separately)

• In XML
– Lexical and parsing defined together
– DTD/Schema defines a particular lexical vocabulary
– Parsing is predefined
– XML parser != JITTs parser

Building a JITTs Parser

• JITTs parser requires
– Definition of lexical level
– Definition of parsing rules

• (separately)

• SGML/XML documents
– No changes required
– Enhanced use of existing documents

Building a JITTs Parser II

• Don’t build from scratch!
– Island Grammars!

• Specific productions match constructs of
interest, “islands”

• General productions match the “water”
around the island

• Separates the lexical from parsing

JITTs Advantages I

• Tree based Access : SAX-like speed
– DOM-Lite (less memory footprint)
– Recognize the tree as far or as shallow as

desired
– Allows a tree based interface to the document,

while preserving lower level markup
– When container retrieved, lower level markup

recognized for presentation

JITTs Advantages II

• Partial validation
– Recognize only markup of interest
– Useful for partial validation of offshore data

entry or markup
– Avoids validation of entire file for proofing of

particular errors

Reasons for JITTs

• Single tree view of texts
 Vs.

• Multi-tree view of texts
• Dom-Lite
• Unlimited by current parser models
• Consider your Texts

– Simple tree or Complex tree
• Question is: Which do you prefer?
• Better Question: Which fits your texts?

JITTs Pitfalls

• Watch out for trees!
– Naive top-down parse may be confused by

recursive elements
– Ex: text/div/p/q
– Will become confused at:
– <text><div><p>….<q>Then it is agree, <q>all

debts are paid in full</q> by the signing of this
document.</q>….</p></div></text>

– Problem with tree based syntax.

Future Research

• But what of descriptive markup?
• Is it limited by the tree model?
• Where elements share a common start or

end point?
• Where elements share both a common

start and end point?
• Traditional syntax requires container

relationship

Conclusion

• JITTs parsing offers advantages over
current SGML/XML parsers

• Frees descriptive markup from its tree
ancestry

• Frees document authors from crude work
arounds to make their texts match an
imaginary model

Island Grammar References

• Generating Robust Parsers using Island
Grammars, Moonen,
http://www.cwi.nl/~leon/papers/wcre2001/wcre2001.pdf

• Lightweight Impact Analysis using Island
Grammars, Moonen,
http://citeseer.nj.nec.com/moonen02lightweight.html

• Disambiguation Filters for Scannerless
Generalized LR Parsers, Visser,
www.cs.uu.nl/people/visser/ftp/BSVV02.pdf

Support for Research

This research has been conducted in
collaboration with Matthew Brook
O’Donnell and supported by the
Society of Biblical Literature
http://www.sbl-site.org and
OpenText.org http://www.opentext.org
.

