
http://www.isotopicmaps.org slide 1

TMQL language proposal – apart from Path Language
Stockholm, March 2010

Feedback from the committee appears like this

http://www.isotopicmaps.org slide 2

Scope

•  What else TMQL offers apart from the Path Language?
and
•  How the Path Language is integrated with the rest of TMQL?

–  Does the Path Language have a life of its own?
–  Predicate Invocation
–  SELECT

•  Binding variables
•  Left and right joins?
•  Boolean expressions and exists clauses

–  FLWR, XML content and Topic Map content
–  Auto-atomification
–  Tuples and Tuples Sequences
–  Query context
–  Environment

http://www.isotopicmaps.org slide 3

Does the Path Language have a life of its own

•  Should it be possible to use path expressions on their own?
–  Should we have variables then? How do we bind them?

•  $p / email
–  What does the path expression return?

•  Alternatively, we can use path expressions with variables within the
higher TMQL levels (SELECT/FLWR).

•  We can also use path expressions within other frameworks – template
systems for example (where variables are bound by the application).

Yes, path expressions can be used on their own
Variables as parameters are allowed
Perhaps parameters should have another syntax

http://www.isotopicmaps.org slide 4

Predicate Invocation
•  All agree that the Tolog-like predicate invocation should be supported.
•  Should the predicate syntax be integrated with the Path Language syntax?

–  The predicate:

 association-type(role1: player1,
 role2: player2,
 role3: player3)

http://www.isotopicmaps.org slide 5

Predicate Invocation (continue)

–  As part of the path expression with input and output:

 player1 / association-type(role1 -> role2,
 role3: player3) = player2

This is the normal association traversal operator,
with an additional filter matching the player of
role3

http://www.isotopicmaps.org slide 6

Predicate Invocation (continue)

 Path expression without input:

 association-type(-> role2,
 role1: player1,
 role3: player3)

Matches all associations of the given type that also
have the correct players for role1 and role3 (which
are role types), and then returns the player of the
association role of type role2

Kind of like
association-type(r1 : p1, r3 : p3, r2 : $output)

http://www.isotopicmaps.org slide 7

Predicate Invocation (continue)

–  Path expression without output:

 player1 / association-type(role1 ->,
 role2: player2,
 role3: player3)

This doesn’t return anything. To make it do something
useful you must use $variables, which are then bound
as in predicates.

http://www.isotopicmaps.org slide 8

SELECT

 select [distinct] < value-expression >
 [from value-expression]
 [where boolean-expression]
 [order by < value-expression >]
 [offset value-expression]
 [limit value-expression]

•  The value-expressions are Path Language expressions.

http://www.isotopicmaps.org slide 9

SELECT – Binding Variables (#1)

•  The Tolog/Toma way:
 select $topic, $topic / name::

 where $topic / type = company

 Variables get all the possible values combinations that make
the WHERE clause true.

 In Tolog the above WHERE clause would be written as:
 { instance-of($TOPIC, company) |

 type($TOPIC, company }

The committee likes binding variables in
path expressions, if we can make it work.

http://www.isotopicmaps.org slide 10

SELECT – Binding Variables (#2)

 But, the path expression language allows us to write:
 lmg / email

 Which means that we take all the names, occurrences or roles of
type email. That means that:

 lmg / $t

 will bind $t to all the types of the names, occurrences or roles of
lmg.

 And the following is not very clear:
 $t1 / $t2

 From the Tolog point of view, the problem is that the path
expression language allows us to write “anonymous” predicates:

 any-predicate-taking-two-inputs($t1, $t2)

http://www.isotopicmaps.org slide 11

SELECT – Binding Variables (#3)

 This can be solved in the following ways:
–  Do nothing – the users will avoid this as they will not

understand what it gives.
–  When the variable is not constraint to certain type, assume

topic as default type to a variable (not that elegant, as
variables are allowed to mix values of different types).

–  When the variable type is not constraint – generate an error.

http://www.isotopicmaps.org slide 12

SELECT – Binding Variables (#4)

–  We could forbid having anonymous predicates in the path
expression. So:
 lmg / email
 Will have to be written as:

 lmg / occurrence::email

–  Other option could be to only forbid having variables with
anonymous predicates:
 So:
 lmg / $t
 Will have to be written as:

 lmg / occurrence::$t

We choose either this one, or the one on
the next slide.

http://www.isotopicmaps.org slide 13

SELECT – Binding Variables (#5)

–  Avoid the whole problem by allowing variables to get their
value only by assignment:

 select $topic, $n
 where $topic = / company and
 $n = $topic / name::

http://www.isotopicmaps.org slide 14

Binding Variables – another example (#1)

 select $p where

 employed-by(employer: bouvet, employee: $p) and

 lives-in(location: oslo, located: $p)

http://www.isotopicmaps.org slide 15

Binding Variables – another example (#2)

Integration of path expressions:

 select $p where

 employed-by(employer: bouvet, employee: $p) and

 $p / lives-in(located -> location) = oslo

 select $p where

 $p / lives-in(located -> location) = oslo and

 employed-by(employer: bouvet, employee: $p)

The order of the expressions
within the where clause should
not affect the result of the query

http://www.isotopicmaps.org slide 16

Binding Variables – another example (#2)

Integration of path expressions:

 select $p where

 $p / lives-in(located -> location) = oslo and

 $p / employed-by(employee -> employer) = bouvet

If we don’t allow binding of variables in path
expressions this won’t work

http://www.isotopicmaps.org slide 17

SELECT – The JOINS Problem

•  How to get all the names of all companies in the topic map, and for each
name present its variants if there is at least one such variant or null if
there is no such variant.

–  In Tolog:

 select $topic, $n, $v from
 instance-of($topic, company),
 { topic-name($topic, $n),
 variant($n, $v) }?

http://www.isotopicmaps.org slide 18

SELECT – The JOINS Problem (continue)

–  Alternative – OPTIONAL keyword:

 select $topic, $n, $v
 where $topic = / company and
 $n = $topic / name:: and
 optional $v = $n / variant::

–  Another alternative – XOR keyword:

 select $topic, $n, $v
 where $topic = / company and
 $n = $topic / name:: and
 ($v = $n / variant:: XOR $v = null)

–  Yet another alternative – binding variables in the Path Language filters:

 select $topic, $topic / name:: [.=$n], $n / variant::
 where exists $topic = / company

http://www.isotopicmaps.org slide 19

SELECT – The JOINS Problem (continue #2)

–  And another: bind in the query

 select $topic, $n, $n / variant::
 where $topic = / company and

 $n = $topic / name::
–  With the XOR inside the path expression

 select $topic, $n, $v
 where $topic = / company and
 $n = $topic / name:: and
 $v = ($n / variant:: || null)

We like the last one. However, we may
still need OPTIONAL and XOR.

http://www.isotopicmaps.org slide 20

Where Variables Are Bound

•  Where variables can be bound?
–  Only in the WHERE clause or also in the SELECT clause?

select $topic / name:: @$scope, $scope
where $topic / name:: = ’lung’

$topic / name:: | $scope
 ----------------+----------
 lung | english
 long | dutch

Some people like this.

Others don’t like binding
variables and producing new
rows in the select part.

http://www.isotopicmaps.org slide 21

Where Variables Are Bound
•  Where variables can be bound?

–  Only in the WHERE clause or also in the SELECT clause?

select $n, $n / scope::
where $topic / name:: = ’lung’ and
 $n = $topic / name::

 $n | $scope
 ----------------+----------
 lung | english
 long | dutch

This how you would have to
write the query if we don’t allow
new rows and variable binding in
select.

Path expressions in the select
always produce exactly one
value. If the output set is empty,
that value is null. If it has more
than one value, one is picked at
random.

http://www.isotopicmaps.org slide 22

Where Variables Are Bound
•  Where variables can be bound?

–  Only in the WHERE clause or also in the SELECT clause?

select $n, $scope::
where / topic:: [name:: = ‘lung‘]
 / name:: [. = $n] / scope:: [. = $scope]

 $n | $scope
 ----------------+----------
 lung | english
 long | dutch

It’s also possible to do this
entirely in the path language,
if we allow variable binding

http://www.isotopicmaps.org slide 23

Where Variables Are Bound
•  Where variables can be bound?

–  Only in the WHERE clause or also in the SELECT clause?

select $n, $scope::
where ‘lung‘ / has-value::
 [parent:: / name:: = $n]
 / scope:: [. = $scope]

 $n | $scope
 ----------------+----------
 lung | english
 long | dutch

We could introduce more axes
to allow a different style of
query.

http://www.isotopicmaps.org slide 24

Possible shorthand syntax for assignment
•  Proposal to make this look a bit nicer

select $n, $scope::
where / topic:: [name:: = ‘lung‘]
 / name:: as $n / scope:: as $scope

We observe that this removed
an awful lot of noise.

http://www.isotopicmaps.org slide 25

Clarification

select $c, $p where
 $c = / company and $p = / person

Assuming TM has 5 companies and 3
people, the result would be 15 rows

http://www.isotopicmaps.org slide 26

Existential semantics

•  What about EXISTS clause?
–  Should EXISTS be included for completeness?

•  (EXISTS is currently always implied)
–  Should SOME, AT LEAST and AT MOST be supported?

•  What about FORALL clause?

We don’t want any of these new operators.

http://www.isotopicmaps.org slide 27

FLWR, XML Content and Topic Map Content

 [for binding-set]
 [where boolean-expression]
 [order by < value-expression >]
 return content

•  In Seattle, Graham and Rani thought that FLWR can be left out for now,
together with the XML content and Topic Map content, and added later
(Benjamin mentioned that it seems easy to add). Should we reconsider?

–  FLWR do not suffer from the JOIN problems of the SELECT.
–  FLWR seems to be a better syntax when dealing with graphs.
–  XML content and Topic Map content can be created easily only with FLWR.

We really don’t want to do this in the first
version of TMQL. We need to finish this
thing!

http://www.isotopicmaps.org slide 28

Auto-atomification

•  The Path Language defines type conversion functions.
•  In many situations the type is known (e.g. comparison to string, function

calls etc.)
•  In few cases (in the SELECT clause for example), a default type can be

set as part of the query context.
–  select $p / name:: where $p / type:: = person
–  by default this returns the name object

•  The proposal is to have something like this
–  %pragma output-type string
–  select $p / name:: where $p / type:: = person
–  this now returns the string value

We don’t want this.

http://www.isotopicmaps.org slide 29

Tuples and Tuples Sequences

•  In Seattle it was agreed that the Tuples and Tuples Sequences section
(section 4.8) in the draft is good.

•  Do we still think so?

Yes.

http://www.isotopicmaps.org slide 30

Query Context

•  Variables:
–  Should we have anonymous variables?

•  E.g: $_foo, or $_, ...
–  Should we have built-in special variables?
–  Should we have primes?

•  E.g: $A and $A’ (with the implicit rule that $A != $A’)

Anonymous: we think we don’t need it, given *.

Built-in: absolutely not.

Primes: absolutely not.

http://www.isotopicmaps.org slide 31

Environment

•  Directives
•  Pragmas

–  Taxonometry: is this still needed?

http://www.isotopicmaps.org slide 32

What about isa?

Do we need the isa operator:
 select $p where
 $p isa person

Or the type axis and the type-instance predicate are sufficient:
 select $p where

 $p / type:: = person

 select $p where

 tmdm:type-instance(type: person, instance : $p)

We like isa. It’s transitive.

http://www.isotopicmaps.org slide 33

Using isa in path expressions

/ topic:: [. isa person]

Possible interpretations
 (a isa b) => (a / type:: = b)

or
 (a isa b) => (a [. / type:: = b])

The second makes it possible to write
 / topic:: isa person / name::

Otherwise you’d have to write
 / topic:: [. isa person] / name::

We already have:

@foo => [. / scope:: = foo]

We’re not concluding on this
right now. Rani will consider it
further.

We will also consider ako.

http://www.isotopicmaps.org slide 34

Scope as first-class object

•  This is not possible now. Should it be?
 $n | $scope

 ----------------+----------
 lung | english
 long | dutch
 lunge | { norwegian, foo }

Maybe.

